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1. Introduction

Leukemia cancer causes approximately 2.5% of all new cancer cases and 3.1% of cancer-
related mortality (Huang et al. (2022)). Tons of research has been conducted to improve
the prognosis of leukemia cancer patients, and various of treatment strategies have been
developed to prolong the survival time of patients. One of the most important tasks in
leukemia cancer research is to test whether a new treatment is effective in improving the
survival time of patients. Survival analysis, which estimates the time until the occurrence
of an event of interest, such as death, is crucial for testing the efficacy of new treatments
and identifying prognostic factors that affect survival outcomes.

The Cox model (Breslow (1975)), a widely used statistical method for survival analysis,
is based on the proportional hazards assumption and provides valuable insights into the
relationship between covariates and survival outcomes. However, traditional frequentist
approaches to survival analysis with the Cox model have limitations, such as restrictive
assumptions and difficulties in handling complex data structures.

This analysis used a method that seeks to extend the traditional Cox model with Bayesian
perspectives, which incorporated hierarchical priors that concluded from real-world research,
improving model flexibility and reliability (Muehlemann et al. (2023)). The Bayesian Cox
model was applied to a leukemia cancer treatment dataset to demonstrate its advantages
in survival analysis, including more accurate parameter estimation, better model fit, and
more informative inference.

In this analysis, we first analyze the structure of our data and then introduce the Bayesian
framework and Cox model of its theoretical foundation. After that, a detailed mathematical
deduction was used to find a form of the posterior distribution of the parameters. We then
utilize the Markov Chain Monte Carlo (MCMC) algorithms with Stan to draw posterior
samples and estimate the parameters of the Bayesian Cox model. A detailed interpretation
of the model is also provided to make the inference.
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In conclusion, this work implemented a Bayesian Cox model by extending the traditional
Cox model with hierarchical priors, providing a more flexible and reliable approach to
survival analysis. The results of the analysis provides a more accurate prediction of survival
outcomes and a better understanding of the relationship between covariates and survival
time in patients with different treatments.

2. Data Structure and Notation

The dataset used in this analysis is the leukemia cancer dataset from Kaggle (Djegou
(2022)). This dataset is collected from research that tests the efficacy of a new treat-
ment for leukemia cancer patients and includes information on treatment type and survival
outcomes.

Part of the data is shown below (Table 1):

id t event treatment

1 6 1 1
2 6 1 1
3 6 1 1
4 7 1 1
5 10 1 1
6 13 1 1
7 16 1 1
8 22 1 1
9 23 1 1

10 6 0 1

Table 1: Partial data of the leukemia cancer dataset

We can see that there are 42 observations in the dataset.

The id variable is the unique identifier for each patient, which is not relevant to the analysis
and will be removed.

The treatment variable, is the main target we care about. There are two values in this
variable, 0 and 1, where 0 is the placebo group and 1 is the treatment group. Our goal is to
find out whether the new treatment is effective in improving the survival time of patients
compared to the standard treatment.

The event variable consists of two levels, 0 and 1, where 0 indicates that the patient is
censored and 1 indicates that the patient has died. This variable is particularly important
in survival analysis, as it indicates whether the patient has experienced the event of interest.
And in the following analysis, we will have different treatment for censored and uncensored
(dead) data.

The t variable is the survival time of the patients, which is the time from diagnosis to death
or censoring. The unit of the time is in weeks.
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Characteristic 0, N = 21 1, N = 21 p-value

t 8 (4, 12) 16 (9, 23) 0.004
event 21 (100%) 9 (43%) ¡0.001

Table 2: Summary of characteristics

In order to perform survival analysis, we need to define some notation.

• Let ti be the survival time of patient i or the time at which patient i is censored.

• Let di be the event indicator of patient i, where di = 1 if patient i has died and di = 0
if patient i is censored.

• Let xi be the covariates of patient i, in our analysis, it is specified for the treatment
variable, where xi = 1 if patient i is in the treatment group and xi = 0 if patient i is
in the control group.

• And we use the term D to represent the dataset, when we talk about the censored data,
we use Ddi=0 to represent the censored data, and Ddi=1 to represent the uncensored
data.

3. Methodology

3.1 Bayesian Framework

The Bayesian framework provides a flexible and intuitive approach to statistical modeling by
incorporating prior information and updating it with observed data to obtain the posterior
distribution of the parameters.

To discuss probabilities related to θ given the data y, we must start with a model that
offers a joint probability distribution for both θ and y. This joint distribution is typically
expressed as the product of two components: the prior distribution p(θ), and the likelihood
or sampling distribution p(y|θ). The mathematical representation is:

p(θ, y) = p(θ)p(y|θ)

By applying the principle of conditional probability, specifically Bayes’ rule, and condition-
ing on the observed data y, we derive the posterior density:

p(θ|y) = p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

Here, p(y) is the marginal probability of y, computed as
∑

θ p(θ)p(y|θ) for discrete θ, or as
an integral

∫
p(θ)p(y|θ)dθ for continuous θ. We can also express the posterior density in

a proportional form by excluding the constant term p(y), as it does not depend on θ and
remains constant for a given y:

p(θ|y) ∝ p(y|θ)p(θ)
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Note that the term p(y|θ) should be taken as a function of θ instead of y, in practice, we
usually use the likelihood function, which is the probability of observing the data y given
the parameter θ.

3.2 The Cox Model

The proportional hazards model, also known as the Cox model, is a widely used statistical
method for survival analysis. The Cox model is a semi-parametric model that estimates the
hazard function, which is the instantaneous rate of failure at time t given that the individual
has survived up to time t. The Cox model assumes that the hazard function is a product
of a baseline hazard function and an exponential function of covariates. The mathematical
representation of the Cox model is:

h(t|x) = h0(t) exp(β
TX)

Traditionally, to estimate the parameters β = (β1, β2, . . . , βp), we can use maximum likeli-
hood estimation (MLE) to maximize the likelihood function and obtain those parameters.
However, the MLE has some limitations, such as restrictive assumptions.

Generally, we care more about the ratio of the hazard functions between two groups, which is
the hazard ratio, that is why h0(t) is not that important. However, sometimes we do want to
know the baseline hazard function, which is the hazard function when all the covariates are
0. This is when the Nelson-Aalen estimator comes in handy. The Nelson-Aalen estimator is
a non-parametric estimator of the cumulative hazard function. The Nelson-Aalen estimator
is defined as:

H0(t) =
k∑

j=1

dj∑
l∈Rj

exp(βT (xl − x∗))

Where dj is the number of events at time tj , Rj is the risk set at time tj , and x∗ is the
value of the covariate in the reference group. The survival function can then be expressed
as:

S(t) = PX(Y > t)

= exp(−HX(t))

= exp(−
∫ t

0
hX(dy))

= exp(−H0(t)exp(β
Tx))

Note that S(t) is exactly what we care about in the survival analysis, which is the probability
that the event has not happened at time t.

3.3 Adjusted Bayesian Cox Model

Combing the two concept shown above, we can now have the Bayesian Cox model. The
idea is very intuitive, we can use the Bayesian method to estimate the parameters of the
Cox model.
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However, we are facing some challenges when applying the Bayesian method to the Cox
model. The likelihood function of the Cox model is intractable due to the presence of the
baseline hazard function, which is not specified in the model. And we have two sets of data
that one group is censored and the other is not. Those two different group of data should be
treated differently in the model, which is not properly handled in the original Cox model.

To address these challenges, we propose an adjusted Bayesian Cox model.

3.3.1 Estimate the Baseline Hazard Function

First of all, let’s talk about the H0(t), the baseline hazard function. The traditional method
is to use Nelson-Aalen estimator, however, this estimator is too complicated to implement
in the Bayesian framework. Thinking about the essence of the baseline hazard function, we
can find that the baseline hazard function should have an attribute that is independent of
the covariates and also should be a monotonically increasing function, just like the Nelson-
Aalen estimator. So we can use a simple exponential function to represent the baseline
hazard function, which is:

h0(t) = exp(η)

The biggest advantage of this representation is that we can now estimate the baseline hazard
function in the Bayesian framework and to be noticed that the form of exp(η) can be easily
integrated into the rest part of the model exp(β̂Tx), making η actually the intercept of the
linear model.

3.3.2 Uncensored Data

The uncensored data, which is the data that the event has happened. Recall that the hazard
function represents the instantaneous rate at which events occur, given that the individual
has survived up to time t, and the baseline hazard function is h0(t) = exp(η), we can have
the hazard function:

h(t|x) = exp(η + βTx)

The survival function represents the probability of surviving beyond time t, and can be
represented by:

S(t|x) = exp(−H0(t)exp(β
Tx))

We can now obtain the pdf, which is f(t|x, di = 1), that is:

f(t|x, di = 1) = h(t|x)S(t|x)
= exp(η + βTx) exp(− exp(η + βTx)t)
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Then, we could find the likelihood function of the uncensored data, which is:

L(Ddi=1|η, β) =
∏
i=1

f(ti|xi, di = 1)

=
∏
i=1

exp(η + βTxi) exp(− exp(η + βTxi)ti)

3.3.3 Censored Data

For the censored data, things are a little bit different. The censored data is the data that the
event has not happened, which means our patients are alive. The event time of the censored
data is not the actual event time, but the time that the patient is still alive, which means
that the event time t is not known, so we could not obtain the PDF f(t|x, di = 0) like what
we did in the uncensored data. Instead, we work with the survival function S(t|x, di = 0),
or its complementary cumulative distribution function (CCDF) to handle these cases.

In our analysis, we only have right censored data. This means that for the given time t, we
only know that the event does not happen at t. Therefore, the likelihood contribution of
this data point is based on the probability that the event time T is greater than t, meaning
S(t|x) = P (T > t|x). Then, the likelihood function of the censored data is:

L(Ddi=0|η, β) =
∏
i=1

S(t|x, di = 0)

=
∏
i=1

exp(− exp(η + βTxi)ti)

3.4 MCMC Sampling

To estimate the posterior distribution of the parameters in the Bayesian Cox model, we
use Markov Chain Monte Carlo (MCMC) algorithms to draw samples from the posterior
distribution. The MCMC algorithms generate a sequence of samples that converge to the
target distribution, allowing us to estimate the posterior distribution of the parameters. In
this analysis, we use the Stan software to implement the MCMC sampling and estimate the
parameters of the Bayesian Cox model.

4. Computation

4.1 Posterior Derivation

Considering what parameters we need to estimate in the model, we have η and βtreatment.
We can first set prior for those parameters. Let’s say both of the parameters follow a normal
distribution that:

η ∼ N(0, 10)

βtreatment ∼ N(0, 10)
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And we also get the likelihood from the previous part:

L(Ddi=0|η, β) =
∏
i=1

S(t|x, di = 0)

=
∏
i=1

exp(− exp(η + βTxi)ti)

L(Ddi=1|η, β) =
∏
i=1

f(ti|xi, di = 1)

=
∏
i=1

exp(η + βTxi) exp(− exp(η + βTxi)ti)

We can have the posterior distribution of the parameters as follows:

p(η, βtreatment|D) ∝ L(D|η, βtreatment)p(η)p(βtreatment)

∝ L(Ddi=1|η, β)L(Ddi=0|η, β)p(η)p(βtreatment)

∝
∏

i=1;di=1

exp(η + βtreatmentxi) exp(− exp(η + βtreatmentxi)ti)

·
∏

i=1;di=0

exp(− exp(η + βtreatmentxi)ti)

· exp(−η2)exp(−β2
treatment)

4.2 Metropolis-Hastings Algorithm

For this particular case, I would suggest using the Metroplis-Hastings algorithm to sample
the posterior distribution of the parameters.

To implement the MH algorithm, we need to prepare the following equations: h(t|x), S(t|x), L(Ddi=0|η, β),
and L(Ddi=1|η, β) and the priors of the parameters, which are βtreatment ∼ N(0, 10) and
η ∼ N(0, 10). Then we can start the sampling process.

The first step is the initialization of the parameters, we can set η = 0 and βtreatment = 0.
We should also choose proposal distribution variances for the parameters, which could be
ση = 1 and σβtreatment = 1.

The following step is the main iteration of the MH algorithm. Let’s say we will iterate the
algorithm for 5000 times. In each iteration, we will sample the new parameters from the
proposal distribution. For example, in the iteration number k, for η, we will first sample
a new value η∗ from the normal distribution N(η(k−1), σ2

η). Then, we will compute the
acceptance ratio:

r =
p(ηk|D)

p(η(k−1)|D)
· q(η

(k−1)|ηk)
q(ηk|η(k−1))

Where q is the proposal distribution here, and since it is a normal distribution (symmetrical),
we can cancel it out in the acceptance ratio. And since we have the acceptance ratio, we can
then decide whether to accept the new value or not by comparing it to a random number
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from the uniform distribution. If we accept the new value, then η(k) = η∗, otherwise,
η(k) = η(k−1).

We will do the same thing for βtreatment in the same iteration.

And after the 5000 iterations, we will have 5000 samples for each parameter, usually, we
will set a 1000 iterations as the burn-in period, which means we will discard the first 1000
samples, and then we will have 4000 samples left. In practice, we shall run several chains
to ensure the convergence of the algorithm, and if we confirm the convergence, we can then
combine the samples from different chains to get the final result. Usually, we can use the
mean value of the chain as our estimates.

Algorithm 1 Metropolis-Hastings Sampling for Bayesian Cox Model

1: Initialize η(0) = 0, β
(0)
treatment = 0

2: Set proposal distribution variances σ2
η = 1, σ2

β = 1
3: Set number of iterations N = 5000
4: Set burn-in period B = 1000
5: for k = 1 to N do
6: Sample new candidate η∗ from N (η(k−1), σ2

η)

7: Compute acceptance ratio αη = p(η∗|D)

p(η(k−1)|D)

8: Generate uniform random number u ∼ Uniform(0, 1)
9: if u ≤ αη then

10: Accept η∗: set η(k) = η∗

11: else
12: Reject η∗: set η(k) = η(k−1)

13: end if
14: Sample new candidate β∗

treatment from N (β
(k−1)
treatment, σ

2
β)

15: Compute acceptance ratio αβ =
p(β∗

treatment|D)

p(β
(k−1)
treatment|D)

16: Generate uniform random number u ∼ Uniform(0, 1)
17: if u ≤ αβ then

18: Accept β∗
treatment: set β

(k)
treatment =β∗

treatment

19: else
20: Reject β∗

treatment: set β
(k)
treatment = β

(k−1)
treatment

21: end if
22: end for
23: Retain samples {η(B+1), . . . , η(N)} and {β(B+1)

treatment, . . . , β
(N)
treatment}

24: Estimate posterior means
25: η̂ = 1

N−B

∑N
k=B+1 η

(k)

26: β̂treatment =
1

N−B

∑N
k=B+1 β

(k)
treatment
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5. Data Analysis

5.1 Estimate the Parameters with Stan

Now, let’s implement the adjusted Bayesian Cox model using the Stan to estimate the
parameters of the model.

In our case, we will set the iteration number to be 5000 and the number of chains to be 5.
After the sampling process, we obtained the following results.

As we can see in the Table 3, the mean of the posterior distribution of the βtreatment is
-1.556461, which has a standard deviation of 0.4093681, and the credible interval is (-
2.373586, -0.7818435). The mean of the posterior distribution of the η is -2.184783, which
has a standard deviation of 0.2187248, and the credible interval is (-2.635452, -1.7754279).

mean se mean sd 2.5% 97.5%

beta treatment -1.560972 0.0056122 0.4074366 -2.387561 -0.7962161
eta -2.181942 0.0031971 0.2213597 -2.631265 -1.7686307
lp -109.569255 0.0133302 0.9989581 -112.244320 -108.5861071

Table 3: Summary of the posterior distribution of the parameters

Now, let’s check the convergence of the MCMC algorithm by plotting the traceplot of the
parameters (Figure 1). As we can see in the plot that all of the 5 chains are well mixed and
converged, which means the process converged well.

Figure 1: The Traceplot of Sample Draws
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We could also plot the distribution of the draws to check the result (Figure 2). We may
find that the draws seems to be a normal distribution and condencd on our mean value,
which is a good sign that the MCMC algorithm works well.

Figure 2: The Density Plot of Sample Draws

To be noticed that, both of the distribution of η and βtreatment are normal distribution, and
neither of their credible intervals contains 0, which suggests those coefficients are significant
in the model.

Now, with the posterior distribution of the parameters, we can plot the survival function of
the treatment group and the placebo group. Recall that the survival function is defined as

S(t) = exp(− exp(η + βTx)t)

So for the treatment group, the survival function is:

S(t) = exp(− exp(η + βtreatment)t)

= exp(− exp(−2.184783− 1.556461)t)

And for the placebo group, the survival function is:

S(t) = exp(− exp(η)t)

= exp(− exp(−2.184783)t)

The following plot (Figure 3) shows the survival function of the treatment group and the
placebo group. As we can see, the survival probability of the treatment group is higher
than the placebo group, and the survival rate of the placebo group decreases faster than
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the treatment group and decreases to 0 at around 40 weeks, while the treatment group still
has a survival rate over 0.037 at that time, and the treatment group has a survival rate over
0.25 until the end of the research. This result indicates that the new treatment is effective
in improving the survival time of patients.

Figure 3: Survival Probability Comparison between Groups

5.2 Model Comparison

In order to check whether our model is effective in predicting the survival time of patients,
we can compare the Bayesian Cox model with the traditional Cox model. We will use
”survival” package in R as a reference to check the result.

We may see form the table (Table 4) that the result of the traditional Cox model is very
similar to our adjusted Bayesian Cox model, which is a good sign that our model works
well.

coef exp(coef) se(coef) z Pr(> |z|)

treatment -1.572125 0.2076035 0.4123967 -3.812167 0.0001378

Table 4: Summary of the traditional Cox model

A survival plot (Figure 4) is also provided to compare the survival probability of the treat-
ment group and the placebo group fitted by the ‘survival‘ package. As we can see, the trend
of survival probability also went very similar to our model.
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Figure 4: Survival Probability Comparison between Groups - Reference

5.3 Result Interpretation

Now we have been confirmed that our model is working well and the new treatment is
effective in improving the survival time of patients. We can dive deeper into the result and
make some interpretations.

Let’s start with the interpretation of η. η is the parameter of the baseline hazard function,
which could be also understood as the intercept of the linear model in the later part of
the model. The mean of the posterior distribution of η is -2.184783, which means that
the baseline hazard function is exp(−2.184783) = 0.112. Note that the hazard function is
constant across time, which means that the hazard function is 0.112 for all the patients.

Note that the Cox model, is also called the proportional hazard model, so a good way to
interpret the βtreatment is to interpret it as the hazard ratio. The mean of the posterior
distribution of βtreatment is -1.556461, which means that the hazard ratio of the treatment
group to the placebo group is exp(−1.556461) = 0.210. This means that the hazard of the
treatment group is 0.210 times the hazard of the placebo group.

5.4 Conclusion

In our analysis, we proposed an adjusted Bayesian Cox model that considers both censored
and uncensored data. We applied this method to a Leukemia cancer treatment dataset. We
found that the treatment group had a significantly higher survival rate than the placebo
group, suggesting that the treatment was effective. We also compared the Bayesian model
result with the traditional method to check our result’s validity, and we found it to be valid.
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This analysis not only proved that the target treatment is effective for leukemia cancer but
also that the Bayesian Cox model can be useful in survival analysis.
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